Act now and download your Cisco icnd1 100 105 pdf test today! Do not waste time for the worthless Cisco icnd 100 105 tutorials. Download Rebirth Cisco Cisco Interconnecting Cisco Networking Devices Part 1 (ICND1 v3.0) exam with real questions and answers and begin to learn Cisco ccent ccna icnd1 100 105 pdf with a classic professional.
♥♥ 2021 NEW RECOMMEND ♥♥
Free VCE & PDF File for Cisco 100-105 Real Exam (Full Version!)
★ Pass on Your First TRY ★ 100% Money Back Guarantee ★ Realistic Practice Exam Questions
Free Instant Download NEW 100-105 Exam Dumps (PDF & VCE):
Available on:
http://www.surepassexam.com/100-105-exam-dumps.html
Q121. - (Topic 3)
Refer to the exhibit.
Assume that all router interfaces are operational and correctly configured. In addition, assume that OSPF has been correctly configured on router R2. How will the default route configured on R1 affect the operation of R2?
A. Any packet destined for a network that is not directly connected to router R2 will be dropped immediately.
B. Any packet destined for a network that is not referenced in the routing table of router R2 will be directed to R1. R1 will then send that packet back to R2 and a routing loop will occur.
C. Any packet destined for a network that is not directly connected to router R1 will be dropped.
D. The networks directly connected to router R2 will not be able to communicate with the 172.16.100.0, 172.16.100.128, and 172.16.100.64 subnetworks.
E. Any packet destined for a network that is not directly connected to router R2 will be dropped immediately because of the lack of a gateway on R1.
Answer: B
Explanation:
First, notice that the more-specific routes will always be favored over less-specific routes regardless of the administrative distance set for a protocol. In this case, because we use OSPF for three networks (172.16.100.0 0.0.0.3, 172.16.100.64 0.0.0.63, 172.16.100.128 0.0.0.31) so the packets destined for these networks will not be affected by the default route. The default route configured on R1 “ip route 0.0.0.0 0.0.0.0 serial0/0 will send any packet whose destination network is not referenced in the routing table of router R1 to R2, it doesn’t drop anything. These routes are declared in R1 and the question says that “OSPF has been correctly configured on router R2, so network directly connected to router R2 can communicate with those three subnetworks. As said above, the default route configured on R1 will send any packet destined for a network that is not referenced in its routing table to R2; R2 in turn sends it to R1 because it is the only way and a routing loop will occur.
Q122. - (Topic 1)
Which two statements describe the operation of the CSMA/CD access method? (Choose two.)
A. In a CSMA/CD collision domain, multiple stations can successfully transmit data simultaneously.
B. In a CSMA/CD collision domain, stations must wait until the media is not in use before transmitting.
C. The use of hubs to enlarge the size of collision domains is one way to improve the operation of the CSMA/CD access method.
D. After a collision, the station that detected the collision has first priority to resend the lost data.
E. After a collision, all stations run a random backoff algorithm. When the backoff delay period has expired, all stations have equal priority to transmit data.
F. After a collision, all stations involved run an identical backoff algorithm and then synchronize with each other prior to transmitting data.
Answer: B,E
Explanation:
Ethernet networking uses Carrier Sense Multiple Access with Collision Detect (CSMA/CD), a protocol that helps devices share the bandwidth evenly without having two devices transmit at the same time on the network medium. CSMA/CD was created to overcome the problem of those collisions that occur when packets are transmitted simultaneously from different nodes. And trust me, good collision management is crucial, because when a node transmits in a CSMA/CD network, all the other nodes on the network receive and examine that transmission. Only bridges and routers can effectively prevent a transmission from propagating throughout the entire network! So, how does the CSMA/CD protocol work? Like this: when a host wants to transmit over the network, it first checks for the presence of a digital signal on the wire. If all is clear (no other host is transmitting), the host will then proceed with its transmission. But it doesn’t stop there. The transmitting host constantly monitors the wire to make sure no other hosts begin transmitting. If the host detects another signal on the wire, it sends out an extended jam signal that causes all nodes on the segment to stop sending data (think, busy signal). The nodes respond to that jam signal by waiting a while before attempting to transmit again. Backoff algorithms determine when the colliding stations can retransmit. If collisions keep occurring after 15 tries, the nodes attempting to transmit will then time out.
Q123. - (Topic 1)
Refer to the exhibit.
Mary is sending an instant message to Robert. The message will be broken into a series of packets that will traverse all network devices. What addresses will populate these packets as they are forwarded from Router1 to Router2?
A. Option A
B. Option B
C. Option C
D. Option D
E. Option E
Answer: B
Explanation:
The Source and Destination IP address is not going to change. Host 1 IP address will stay
as being the source IP and the Host 2 IP address will stay the destination IP address.
Those two are not going to change.
For the MAC address it is going to change each time it goes from one hope to another.
(Except switches... they don't change anything)
Frame leaving HOST 1 is going to have a source MAC of Host 1 and a destination MAC of
Router 1.
Router 1 is going to strip that info off and then will make the source MAC address of Router1's exiting interface, and making Router2's interface as the destination MAC address. Then the same will happen... Router2 is going to change the source/destination info to the source MAC being the Router2 interface that it is going out, and the destination will be Host2's MAC address.
Q124. - (Topic 3)
Which two statements describe the IP address 10.16.3.65/23? (Choose two.)
A. The subnet address is 10.16.3.0 255.255.254.0.
B. The lowest host address in the subnet is 10.16.2.1 255.255.254.0.
C. The last valid host address in the subnet is 10.16.2.254 255.255.254.0
D. The broadcast address of the subnet is 10.16.3.255 255.255.254.0.
E. The network is not subnetted.
Answer: B,D
Explanation:
The mask 255.255.254.0 (/23) used with a Class A address means that there are 15 subnet bits and 9 host bits. The block size in the third octet is 2 (256 - 254). So this makes the subnets in 0, 2, 4, 6, etc., all the way to 254. The host 10.16.3.65 is in the 2.0 subnet. The next subnet is 4.0, so the broadcast address for the 2.0 subnet is 3.255. The valid host addresses are 2.1 through 3.254
Q125. - (Topic 5)
Refer to the exhibit.
A problem with network connectivity has been observed. It is suspected that the cable connected to switch port Fa0/9 on Switch1 is disconnected. What would be an effect of this cable being disconnected?
A. Host B would not be able to access the server in VLAN9 until the cable is reconnected.
B. Communication between VLAN3 and the other VLANs would be disabled.
C. The transfer of files from Host B to the server in VLAN9 would be significantly slower.
D. For less than a minute, Host B would not be able to access the server in VLAN9. Then normal network function would resume.
Answer: D
Explanation:
Because Switch1 has multiple redundant links in this network, traffic would not work for less than a minute, and then it would get rerouted along the longer path to the host. The 1 minute outage would be the length of time it takes STP to converge.
Q126. - (Topic 7)
On which type of device is every port in the same collision domain?
A. a router B. a Layer 2 switch
C. a hub
Answer: C
Explanation: Collision domainA collision domain is, as the name implies, a part of a network where packet collisions can occur. A collision occurs when two devices send a packet at the same time on the shared network segment. The packets collide and both devices must send the packets again, which reduces network efficiency. Collisions are often in a hub environment, because each port on a hub is in the same collision domain. By contrast, each port on a bridge, a switch or a router is in a separate collision domain.
Q127. - (Topic 1)
Refer to the exhibit.
A network has been planned as shown. Which three statements accurately describe the areas and devices in the network plan? (Choose three.)
A. Network Device A is a switch.
B. Network Device B is a switch.
C. Network Device A is a hub.
D. Network Device B is a hub.
E. Area 1 contains a Layer 2 device.
F. Area 2 contains a Layer 2 device.
Answer: A,D,E
Explanation:
Switches use a separate collision domain for each port, so device A must be a switch. Hubs, however, place all ports in the same collision domain so device B is a hub. Switches reside in layer 2 while hubs are layer 1 devices.
Q128. - (Topic 5)
A receiving host has failed to receive all of the segments that it should acknowledge. What can the host do to improve the reliability of this communication session?
A. decrease the window size
B. use a different source port for the session
C. decrease the sequence number
D. obtain a new IP address from the DHCP server
E. start a new session using UDP
Answer: A Explanation:
The Window bit in the header determines the number of segments that can be sent at a time. This is done to avoid overwhelming the destination. At the start of the session the window in small but it increases over time. The destination host can also decrease the window to slow down the flow. Hence the window is called the sliding window. When the source has sent the number of segments allowed by the window, it cannot send any further segments till an acknowledgement is received from the destination. On networks with high error rates or issues, decreasing the window size can result in more reliable transmission, as the receiver will need to acknowledge fewer segments. With a large window size, the sender will need to resend all the frames if a single one is not received by the receiver.
Q129. - (Topic 1)
Which network device functions only at Layer 1 of the OSI model? A. Option A
B. Option B
C. Option C
D. Option D
E. Option E
Answer: B
Explanation:
Most hubs are amplifying the electrical signal; therefore, they are really repeaters with several ports. Hubs and repeaters are Layer 1 (physical layer) devices.
Q130. - (Topic 4)
What happens when computers on a private network attempt to connect to the Internet through a Cisco router running PAT?
A. The router uses the same IP address but a different TCP source port number for each connection.
B. An IP address is assigned based on the priority of the computer requesting the connection.
C. The router selects an address from a pool of one-to-one address mappings held in the lookup table.
D. The router assigns a unique IP address from a pool of legally registered addresses for the duration of the connection.
Answer: A
Reference:
http://www.cisco.com/en/US/docs/security/asa/asa82/configuration/guide/nat_staticpat.html
Static PAT translations allow a specific UDP or TCP port on a global address to be translated to a specific port on a local address. That is, both the address and the port numbers are translated.
Static PAT is the same as static NAT, except that it enables you to specify the protocol (TCP or UDP) and port for the real and mapped addresses. Static PAT enables you to identify the same mapped address across many different static statements, provided that the port is different for each statement. You cannot use the same mapped address for multiple static NAT statements.
Port Address Translation makes the PC connect to the Internet but using different TCP source port.